

Null Hypothesis H_0 : Statement being tested; Claim about μ or historical value of μ

Given Null Hypothesis: $\mu = k$ k is a value of the mean given

 μ is the population mean discussed throughout the worksheet

Alternative Hypothesis H_1 : Statement you will adopt in the situation in which evidence(data) is strong so H_0 is rejected.

Why do hypothesis testing? Sample mean may be different from the population mean.

Type of Test to Apply:

Right Tailed

Left-Tailed

Two-Tailed

 $\mu > k$ You believe that μ is more than value stated in H_0

 $\mu < k$ You believe that μ is less than value stated in H_0

 $\mu \neq k$ You believe that μ is different from the value stated in H_0

Test μ When Known(P-Value Method)

Given x is normal and is known: test statistic: $z_{\bar{x}} = \frac{\bar{x} \mu}{/\sqrt{n}}$

 $\bar{x} = \text{mean of a random sample}$ $\mu = \text{value stated in } H_0$ n = sample size

= population standard deviation α : Preset level of significance*

P-Values and Types of Tests:

Graph	Test	Conclusion
$z_{ar{x}}$ 0	1. Left-tailed Test $H_0: \mu = k H_1: \mu < k$ P-value $= P(z < z_{\bar{x}})$ This is the probability of getting a test statistic as low as or lower than $z_{\bar{x}}$	If P-value $\leq \alpha$, we reject H_0 and say the data are statistically significant at the level α . If P-value $> \alpha$, we do not reject H_0 .
0 $z_{ar{x}}$	2. Right-tailed Test $H_0: \mu = k H_1: \mu > k$ P-value = $P(z > z_{\bar{x}})$ This is the probability of getting a test statistic as high as or higher than $z_{\bar{x}}$	If P-value $\leq \alpha$, we reject H_0 and say the data are statistically significant at the level α . If P-value $> \alpha$, we do not reject H_0 .
$ z_{ar{x}} $ 0 $ z_{ar{x}} $	3. Two-tailed Test $H_0: \mu = k H_1: \mu \neq k$ P-value = $2P(z > z_{\bar{x}})$ This is the probability of getting a test statistic either lower than $ z_{\bar{x}} $ or higher than $ z_{\bar{x}} $	If P-value $\leq \alpha$, we reject H_0 and say the data are statistically significant at the level α . If P-value $> \alpha$, we do not reject H_0 .

^{*}Note: α is given in all of these approaches used

SAN MARCOS

Test μ When Unknown(P-Value Method Continued)

test statistic: $t = \frac{\bar{x} + \mu}{s/\sqrt{n}}$ s = sample standard deviation

Critical Region Method

is known: test statistic: $z_0 = \frac{\bar{x} \mu}{/\sqrt{n}}$ Testing μ when = population standard deviation

 μ is the population mean discussed throughout the worksheet

 α : Preset level of significance

Note: Assuming a table of areas to the left of z is used, area α is converted to area 1- α if you are using the right tailed test.

Also Note: Shaded area in figures below is the critical region.

Graph	Method	Conclusion
-t 0		If P-value $\leq \alpha$, we reject H_0 . If P-value $> \alpha$, we do not reject H_0 .
	Given Area = α Critical Value: Find z-score of α : $z_c = -t$ Compare z_0 to z_c	If sample test statistic \leq critical value, reject H_0 If sample test statistic $>$ critical value, fail to reject H_0 .
0 t	$\frac{\text{Right-tailed Test}}{H_0: \mu = k} \frac{H_1: \mu > k}{H_2: \mu > t}$ $\text{P-value} = P(z > t)$	If P-value $\leq \alpha$, we reject H_0 . If P-value $> \alpha$, we do not reject H_0 .
	Given Area = α Critical Value: Find z-score of α : $z_c = t$ Compare z_0 to z_c	If sample test statistic — critical value, reject H_0 If sample test statistic < critical value, fail to reject H_0 .
-t 0 t	$\frac{\text{Two-tailed Test}}{H_0: \mu = k} H_1: \mu \neq k$ $\text{P-value} = 2P(z > t)$	If P-value $\leq \alpha$, we reject H_0 . If P-value $> \alpha$, we do not reject H_0 .
	Area of each shaded region $= \frac{\alpha}{2}$ Critical Value: Find z-score of α : $z_c = -t$ Compare z_0 to z_c	If sample test statistic lies at or beyond critical values, reject H_0 . If sample test statistic lies between critical values, fail to reject H_0 . (Notation: $t < z_0 < t$)

Note: For each formula to find z-scores, if you can assume that x has a normal distribution, then any sample size n will work. If you cannot assume this, use a sample size n

